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resented herein are the results of a four-month technical program to develop
and demonstrate the application of an inverse perturbation design procedure, *
originally developed at United Technologies Research Center, to curved structures.
Briefly, the inverse perturbation technique relies on information concerning the
existing vibration modes of a structure to calculate the necessary changes to ob-

tain new, prescribed vibration characteristics for selected modes of the structure,
and its application to curved structures necessitates the use of finite-element
computer analyses to obtain the necessary accuracy. Consequently, the study

%—t’:
£
1

Y involved formulation of the equations and computer programs necessary to process
f, NASTRAN output data on vibration mode shapes, and preparation of the UTRC inverse
»g perturbation design program to accept the processed output, and compute: a) the
43 perturbation functions associated with changes in frequency and mode shape admixture
; (admixture between mode shapes implies that the mode shapes of an altered structure
; may be expressed as linear combinations of the mode shapes of an unaltered structure),
1 ; and b) the perturbations that result from design changes, as well as perform checks i
i on the stiffness orthogonality and Rayleigh quotient. ]
;& i
i

Supported under Contract F33615-77-C-2092, sponsored by the Air Force Aerc }
Propulsion Laboratory, Air Force Systems Command, the program successfully demon-
strated concept feasibility with the redesign of a flat plate and a h&o arc of a
cylindrical shell, both mounted as cantilever beams. Presented:-in the following
sections are: an introduction which briefly reviews the motivation for the inves-
tigations (Section II); an overview of the concept of inverse perturbation

SR

(Section III); a description of the computer programs written to implement the ﬁ
concept (Section IV); a presentation of the computations and experiments performed, : ]
together with the results obtained for the two cantilevered objects (Section V); é

and a discussion of potential benefits to be derived from continued development of
the technique (Section VI). Included as an Appendix is a detailed description of

1 previous UTRC work on redesigning structural vibration modes by inverse perturba-
tion, subject to minimal change theory, which set the stage for the investigations
reported herein.
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SECTION II

INTRODUCTION

The design of structures to withstand the vibratory excitation experienced
inside a jet engine is clearly a multifaceted problem. Not only must resonant
response be considered, but also the possibility of aerodynamically excited vibra-
tions such as flutter. Furthermore, performance requirements, such as the ability
of a fan to compress air or of a turbine to extract energy from an air flow, and
practical issues, such as weight and resistance to impact damage, also enter into
the choice of a good design. The scope of the problem makes a truly general-purpose
computerized design procedure unlikely; however, situations do arise where answers
to a portion of the total problem can be useful in formulating the proper design
approach.

Ameong the most enigmatic facets of a structure are its vibration modes. These
are functions of the structure that can be used to characterize its response to
forced vibratory excitation (Ref. 1), to transients, and even to static forces
(Ref. 2). ©So central are these functions in characterizing vibratory response,
that in recent years numerous large-scale computer programs have been developed to
analyze structures, by finite-element methods, to determine these modes. From the
experimental point of view, holographic vibration analysis has greatly facilitated
the determination of vibration modes on the visible surfaces of structures (Ref. 1).

Whereas finite-element and holographic methods, in addition to numerous other
experimental and theoretical techniques, make it possible to analyze a given struc-
ture for its vibration modes, the question of how that structure should be changed
to effect a specified change in its vibration modes lies relatively unapproached.
Work at the United Technologies Research Center in recent years (Refs. 3, 4 and 5)
has suggested a potentially powerful tool, based upon perturbation equations, for
Just such a task. It is possible, of course, to use perturbation theory to gain an
approximate answer to the question of how the vibration modes of a structure will
change as a result of small changes in the structure; this has been known since
the 19th century. The interesting problem is, however: how does one invert the
usual perturbation analysis to answer the question posed at the beginning of this
paragraph? The most recent work in this area, at these laboratories, has established
that by minimizing the change to a structure necessary to accomplish a set of
changes to its vibration modes, we may define a unique set of functions which in
turn generate a unique change to the structure. These functions may be called per-
turbation functions, and they are formed from pairs of vibration-mode functions and
their spatial derivatives. A detailed description of that design technique, which
we call inverse perturbation, together with its application to the redesign of a
cantilever plate, based upon vibration mode data obtained from hologram interferometry
is+included as Appendix I to the present report.

n




Presented in the main body of the current report is a description of the
program of research carried out under Air Force Contract F33615-77-C-0292 to
extend this inverse perturbation method of design, developed for holographically
determined vibration modes, so that it can make use of the NASTRAN finite-element
program for vibration analysis. This has resulted in a design program which, in
its present form, can be used in conjunction with NASTRAN to alter the thickness of
any shell-like structure in a way that will generate, approximately, some specified
change in the vibration modes of a structure. At present, changes in lateral
dimensions of the shell, or in the boundary conditions of the shell cannot be dealt
with, but future programs can be conceived to make this possible. The current pro-
gram is likely to require a number of iterative designs, each involving a NASTRAN
analysis to finally close upon a structure whose actual vibrations are the ones
desired; however, all indications are that the procedure will converge.
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SECTION II1

THE CONCEPT 'OF INVERSE PERTURBATION

The details of the derivations involved in inverse perturbation can be found
in Refs. 4 and 5, as well as Appendix I to the present report. Presented here are
the general results and the specific equations that relate to this program. First,
the design variable is taken to be the percentage change in thickness of the plate
or shell, Ah(x,y)/h(x,y), where h(x,y) is the thickness of the structure, and x and
y are spatial coordinates in its surface. This design variable is expanded as a
series of functions, 8(x,y), called perturbation functions, which are functions of
the coordinates, x and y. The coefficients of the series are determined, in part,
by the set of changes that are desired, (A), which can be written as a row matrix.
The (A)'s are related to percentage changes in frequency, and to coefficients
of admixture between mode shapes. (As noted in the Summary, admixture between mode
shapes implies that the mode shapes of an altered structure may be expressed as
linear combinations of the mode shapes of an unaltered structure.) The final set
of factors in the equation that determines the percentage changes in thickness is
the inverse of what we may call a perturbation matrix, [B]. Thus the primary equa-
tion of inverse perturbation is

sh(x,y)/n(x,y) = (A8 (o(xy )7, (1)

In Eq. (1), the necessary set of perturbation functions have been arranged as
a row matrix, (8(x,y)), and the superscript T denotes the transposed matrix; i.e.,
a column matrix. In order to define the matrix [B], it is necessary to specify the
set of changes (A) and the set of perturbation functions (0). (Note: the functional
dependence of 0 on x and y is implied throughout.) The perturbation functions are
formed from products of parameters obtained from pairs of vibration modes, or from
squares and products of parameters obtained from a single mode. Thus, we may identify
perturbation functions by a double subscript Onk‘ or Ohns depending upon whether
the perturbation function is Jormed from two vibration mode shapes ®l(x,y) and
¢ (x,y), or from ¢n(x,y) alone. Similarly, the change parameters (A) may be
characterized by double subscripts; \nk being related to the amount of mode shape
@k that is found added to @n as a result of the structural change, and A, being
related to the change in frequency of the nth mode. The specification of any change
parameter requires the inclusion of the corresponding perturbation function in
Eq. (1). 1In this way, the number of degrees of freedom in changing the structure
(i.c., the perturbation functions) matches the number of constraints (i.e., the
change parameters).




With this in mind, let us define the elements of the perturbation matrix, rrq.
The double subscripts of the change variables, and the perturbation tunctions, may
be ordered in some arbitrary, but mutually consistent way. Let the double subscript
'nk' correspond to the single index 'p', and some other subscript pair 'lm' corre-
spond to 'q'. Then, the element bpq is defined by

bpq = /70,(x,y)0 (x,y) axdy , (2)
where the integration is carried out over the surface of the structure. In this
particular program, however, the structure has been divided into discrete elements
50 that the integrations will extend only over the elements, and the contributions
of the elements summed to obtain the coefficient bpq‘

In order to define the perturbation functions, we must first define the mode
functions according to the form they take in the NASTRAN program. Each element
of the shell-like structures considered in this program is a triangular platelet of
uniform thickness which may bgnd out of its plane to any shape describable by a
cubic polynomial (minus the x“y term), and may deform and rotate homogeneously within
its plane. In terms of a coordinate system local to each element, we may define
the mode function, vectorially, as

%, =1 Yo ¥ ¢ny *k Baos (3)
L —

where i, j and kK are unit vectors in the X, ¥ and z directions, with 2 being out
of the plane of the element, and the origin located at one of the corners of the

element. The components of ¢ are, in their polynomial forms:

=
- ()
L B
= 5
Oy = Pyl * PpaX * bpay, and (5)
2 2
uz ™ n1 * Sn® oy *toopX + CpgXy * cpey +

(6)
°n7x3 b cngxy2 T cn9y3-

The perturbation functions, which may now be defined, are most easily expressed
as the sum of three terms: 1) an inertial term, em; 2) a term related to bending
strain, esb; and 3) a term related to membrane strain, qu. Thus ,

0. =0 + 0

P mp sbp .

smp*

(1)

mpsl s LS

-




where the subscript 'p' denotes the mode pair 'nk'. The perturbation function,
it should be noted, is a scalar. The first term of Eq (7) is

TS -(mnph/wkMk) 22 § tﬁ.’ 5

where W and W, are the natural frequencies, in radians, of modes n and k, p is
volume density, and Mk is the model mass of the kth mode, defined by

M, = ffoh & @ dx dy.
A i (0)

To define the second two terms, let us first define the matrix Qo as

- e 0
§s = [En/o oM (1-v7)] v 1 0 . (10)
0 0 (1-v)/2

where E is Young's modulus and v is Poisson's ratio. We may now define Qhun

&h ) X5h L (11)
Now,
" ” " l[\
Ooop = (Pnz) Bp (O, ) s e

where,

(ka) = (¢i§, oii, @iﬁ). and
= XX yy Xy e \‘)
- v RN o .
( nz (an' ®nz‘ ‘¢nz)’

with the superseripts denoting partial differentiation with respect to the super-
script variables. Finally,

= : )
smp <¢nxy) gs (¢ kxy)' (14)
where, : K 3 - 3
(¢nxy) & (an’ ony‘ ny i 0nx)‘ and
: - 8 g . iy 4 (15)
(®kxy) = (% ky* %y ¢ ¢kx)' (15)

~

Now let us define the change parameters, (A), in terms of
changes in frequency and coefficients of admixture:

the percentage




4

(16)

A
nn

e L.
nk nk(n = @) /wqwy, {27)

[(1 + Amn/mn)2 -1] , and

where C is the admixture coefficient. The new mode shape, ¢ , is expressible in

s

terms of the old mode shapes by the series

1
¢n = tbn + chk ‘bé, (18)

- -

where the term for n = k is omitted from the summation.

The format of the NASTRAN analysis requires some degree of approximation in
implementing Eq. (1). First of all, whatever new design is generated it should
have plate elements of constant thickness, or else the analysis of the new struc-
ture becomes very difficult. This means that the values of the perturbation func-
tions in Eq. (1) should be made constant for each element by taking the average
value over the element. Another difficulty arises in the computation of the
matrix coefficients, b_ , via Eq. (2). If the integrations over each element are
carried out as 1nd1cate3 with products of the polynomials of Eqs. (4-6), then
the resulting integrands may be as high as twelfth order polynomials. To avoid the
awkwardness of having to deal with such large polynomials, we decided to approxi-

mate the perturbation functions within the elements by their average values therein.

This made evaluation of the matrix coefficients, via Eq. (2), simpler, and simul-
taneously provided constant changes in thickness for the plate elements.

s
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SECTION IV

COMPUTER PROGRAM DESCRIPTIONS

A number of computer programs were required in order to implement the design
concept of the subject contract. As described in the following paragraphs, they
included the primary routines for: 1) accepting the NASTRAN data, processing it
and forming coefficient data files (POSTPR); 2) accepting the data files and com-
puting the associated perturbation functions (NASTY); and 3) accepting the per-
turbation functions and performing the redesign (CHANGNAST), as well as various
ancillary routines for performing checks (TESTNASTY, C2 and DISP2V), and subroutines
for simplifying some of the programming.

POSTPR Program

This program accepts, as input, the displacements and rotations of the grid
points of the finite elements in a NASTRAN vibration-mode analysis, in what is
referred to as the global coordinate system. These displacements and rotations are
converted to sets of coordinates that are local to each element. The displacements
and rotations are then used, together with Eqs. (4-6), to solve for the coefficients
that determine the internal deformations of the elements; i.e., the a's, b's, and
¢'s of Egs. (k=6). This is done for each NASTRAN vibration mode, and the resulting
arrays of coefficients are stored in data files for use in subsequent programs.

NASTY Program
This program forms perturbation functions from Egs. (7-15), and takes their
average value over each triangle. Two subroutines (POLVOL and TRIANG) were written
to facilitate this computation. POLVOL finds the value of the integral of the pro-
duct of two polynomials over a triangular region in the x, y plane, while TRIANG,
a subroutine to POLVOL, integrates any term of the two-dimensional polynomial over
the triangular region. NASTY itself is a subroutine to the main inverse perturba-
tion program (CHANGNAST).

CHANGNAST Program

This is the primary inverse perturbation design program, and it has been
written so that it may use perturbation functions generated either by NASTY (and
therefore NASTRAN) or by PERTNAST; an updated version of the original program that
generates perturbation functions from experimental holographic data. CHANGNAST




accepts the various material parameters (Young's modulus, Poisson's ratio, density,
and the vibration mode frequencies), as well as the desired change parameters, i.e.,
the Ank values. It thereupon computes the necessary perturbation functions, forms
the perturbation matrix, and generates the new design via Eq. (1), which it can make
available on punched cards. It also prints the modal masses, the perturbation
matrix, the determinant of the perturbation matrix, the coefficients of the series of
the perturbation functions that comprise the new design, and the root-mean-square
change in the element thicknesses. Finally, via a subroutine called NASTDL, it
computes the various perturbations that may be expected, even for the parameters
that are unconstrained, by a formula that is more accuretc than the perturbation
formula used for the inversion process (see Appendix).

TESTNASTY Program

This program will print the values of the perturbation functions formed by
NASTY, and compute the Rayleigh quotients (the ratio of maximum potential energy to
maximum kinetic energy in the vibration cycle) and the check for orthogonality of
the stiffness functions (see Appendix ). It will also compare NASTRAN computations
of the vibration modes with holographic data when the vibration mode is a scalar
function. It does this by computing the mode-function value of the NASTRAN solution
at the center of each section of the structure for which the holographic data has
been digitized.

C2 Program

This program takes NASTRAN solutions for the vibration modes of an original
and modified structure, and computes the admixture coefficients that best describe
the new modes as a series of the old modes.

DISP2V Program

This program computes vectorial displacements, in one plane, of a plate or
shell from data provided by two holographic interferograms of a vibration mode.
(The third component is assumed to be zero.) By selecting the centers of the sec-
tions of the interferograms to be digitized so that they correspond to the NASTRAN
grid points, direct comparison can be made to the NASTRAN analysis.
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SECTION V

ANALYTICAL-EXPERIMENTAL INVESTIGATIONS

NASTRAN Modeling of the Vibration Modes

The first computations performed were the NASTRAN analyses of both a uniform
plate and a uniform shell segment. The plate was 15.24 cm long by 12.7 cm wide by
0.317 cm thick, and the shell segment was a 45° arc of a cylindrical shell, T.62 cm
long, with an outer radius of T7.62 cm and & thickness of 0.31T7 em. Schematic
illustrations of the structures, as divided into triangular elements for the
NASTRAN analyses, are presented in Fig. 1. Material parameters were taken to be:
Young's modulus, E, 6.1 X 1011 dyncs/vms; density, oy 2.7 grums/cmgz and Poisson's
ratio, v, 0.31. (These were experimentally determined for an aluminum alloy
available in the UTRC shop.) The boundary conditions for the clamped edges were
imposed by requiring that the displacements and rotations of the grid points along
the clamped edges be zero.

Photographs of the experimental structures, as fabricated to correspond to those
analyzed by NASTRAN, are presented in Fig. 2. In fact, the thickness of the experi-

mental plate was 0.330 cm on the average.

The comparison of the mode frequencies of the structures, as obtained via
i 1 N
NASTRAN and experimentally, are presented in Table I for the first three vibration

modes . !

T T

TARLE I :

STRUCTURAL MODE FREQUENCIES '

Vibration Plate Shell i

Mode NASTRAN Experimental NASTRAN " Experimental

£ 105.6 Hz 120.6 Hz 898.7 Hz 806.0 Hz
£y 293.3 Hz 333.8 Hz 1280.0 Hz 1380.0 Hz
£y 642.2 Hz 730.6 Hz 4118.0 Hz L080.0 Hz

r

The NASTRAN computations of the frequencies for the vibration modes of the
plate are all lower than the experimental values by approximately 14 percent. Four
percent of the difference is due to the larger thickness of the experimental plate,
while the remaining ten percent is quite probably due to a premature cutoff of the
iterative solution for the eigenvector in the NASTRAN computations. The consistency
in the error suggests a repetitive problem, and this is supported by the Rayleigh
quotient checks presented later,

10
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Mhe NASTRAN computations for the modal frequencies of the shell give results
that lie both above and below the experimental values, It is suspected that the
rfirst mode frequency, which is in error by over 10 percent, may be the victim of
a difficulty in adequately modeling the boundary condition where the shell is
attached to the base.

Holographic Analysis and NASTRAN Comparison

Holograms were recorded of both the plate and the shell while each was vibrating
in each of its first three modes. In the case of the shell, where both transverse
and axial motions are possible, two hologram recordings, one with illumination from
the left of the-shell and the other with illumination from the right, were made at
each resonance. The vibratory state was maintained exactly the same for each
recording by means of a feedback circuit which employed an optical vibration probe
to detect the vibratory motion, a bandpass filter to suppress all signals except
those in the region of a resonance, a limiting circuit to establish a vibratory
level, and the conventional amplifiers and electromagnet driver to stimulate the
vibration. When the system was properly adjusted, the structure's own vibration
mode would determine the frequency of resonance, and the limiting circuit would
determine the amplitude. Such a system is inherently more stable than an open loop
excitation of the resonance where a small drift of the oscillator frequency can pro-
duce a significant change in vibration amplitude. It is important to maintain the
same vibration level on the structure for each of the two holograms (with different
illuminations) because in their reconstructions the difference in fringe patterns
between them is used to determine the motion transverse to the direction of obser-

~

vation.

Plate Holographic Results

Reconstructions from holograms of the plate, recorded while it was vibrating in§
each of its first three resonance modes, are presented in Fig. 3. They are, respec-
tively, the first bending, first torsion, and second bending modes., From previous

work, these patterns had been divided into 36 sections(a 6 X 0 array) and the data
digitized and. fitted to biquadratic functions. For comparison to the NASTRAN solu- '
tions, the latter were evaluated at the geometrical points corresponding to the

centers of the digitized sections. The differences, defining the mode fit between

the NASTRAN and the normalized holographic results, are presented in Table 11.

Disagreement between the two can be seen to be less than a few percent of the

maximum value (unity) in all cases.
shell Holographic Results
Reconstructions from the holograms recorded of the shell while it was vibrating

in each of its first three modes are presented in Fig. 4., These correspond, morpho-
logically, to the same three modes of the uniform plate. The photographs of these

1k
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ha Photographs of the Holographic Reconstructions of the First Vibration

Mode (806.0 Hz) of a 0.317 em. Thick 45° Arc of ¢ Cylindrical Shell
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Edge at Bottom)
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Photographs of the Holographic Reconstructions of the Second Vibra-
tion Mode (1380.0 Hz) of a 0.317 cm. Thick 45° Arc of a Cylindrical
Shell with Object Beam Illumination From the Left and Right (Clamped
Edge at Bottom)
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reconstructions were digitized using sections whose centers corresponded to sixteen
of the NASTRAN grid points. The holographic data was processed to obtain vectorial

displacements (Ref. 6) (under the assumption that motion in the axis of the cylinder

UL

was neglibible). Table 111 shows the comparison between the NASTRAN and holographic

results for the first three modes of the shell.

TABLE 11

MODE FIT DIFFERENCES: NASTRAN VS. HOLOGRAPHY
Differences

in
Mode 1 L0005 L0036 L0024 .0032 .0027 .0031
Mode 2 -.00k5 | -.0010 | -.0019 | -.0055 . 0001 .0109
Mode 3 L0246 .0202 L0206 L0233 L0224 .0323
| j .00k . 0061 .00k0 | .o0030 | .o023 ]-.0011
| | .0080 .0003 | -.0050 L0014 L0155 .0150
' | L0290 .0210 .0180 L0190 L0260 L0300
. Q000 . Q000 . Q000 .Q030 L0020 . Q020
.00k0 [|-.0040 | -.0104 L0161 .0230 L0200
-.0030 -.0070 -.0030 L0010 .0120 L0240
.0040 L0030 .00k0 . 0080 L0090 L0030
.0010 |-.0120 | -.0296 .0200 L0280 .0270
-.0280 -.0310 -. 0150 -.0240 -,0150 L0000
L0010 L0010 .002 L0030 L0120 L0010
.0000 |-.0190 | -.0110 .0190 L0270 L0140
-.0410 }-.0389 |-.0290 [-.0395 {|-.0282 [-.0320
-.0020 L0080 . 0060 L0010 | -.0030 [-.0000
.0050 [-.0130 |-.0070 L0190 L0280 .0190
.0320 L0510 .0k90 .0270 L0320 L0320

System Checks

The next computations involved the orthogonality checks and Rayleigh quotient

checks. The former measure the degree to which the stiffness functions between modes

are orthogonal, and the latter measure the ratio of maximum potential to maximum
kinetic energy during the vibration cycle of a mode (Ref. 6). The orthogonality
parameters should be zero and the Rayleigh quotients should be unity. These
results are presented in Table 1V.
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NASTRAN RESULTS

Mode Axial
Transverse

-.01895

Transverse .00660

Axial
Transverse

.05821
.02875

-.00748
-.01805

i, .02887

-. 02000

02735
‘ U"'O’Q’h

.00k 35
! - .01674

L0047
l-.0LOL8

‘ .12680
! L.06948

.00738
.002k2

L0011k
06128

03647
v LT 110

TABLE ITI

VS

HOLOGRAPHIC

-.01619
-.00388

00817
-.01h36

07816
L1197

L07566
.01388

00302

.00531
L0330k

. 011\) S
00090

L0051k
« 02 j,l.‘\‘

00102
L0601k

05390
L0581

-.01822
.00825

-,01030
-.00388

~.07416
.00751

-.01624
-.01697

-.011%0

-.018%6

-.07890
-.00668

002 {'\)

03397

-, 05400
L.01348

=, 013073
-.02961

-.02628
00896

-,00013
-.01111

. 12700
-, 0hlk18

N



TABLE IV

ORTHOGONALITY AND RAYLEIGH QUOTIENT CHECKS

Mode Index Orthogonality Parameter Rayleigh Quotient
(nk) Plate Shell Plate Shell
1s 2 -.01141 -. 000004
1S -.00019 +.085832
23 +.00309 .000000
I 40135 1.0282
PR 1.10L7 1.0245
S 2 1.1082 1.0852

Ei Structural Redesign and Correlation

The next two tasks were to redesign the structures and evaluate the results
via a second NASTRAN analysis. Both the cantilever plate and the cylindrical
shell segment were redesigned subject to four constraints: a) lowering of the first
mode frequency by 5 percent (Aw /w1 = -.049); (b) raising of the second mode frequency
by 5 percent (Amy/wq = +,051); }c) an admixture coefficient of the first to the
second mode of mugn?tudu el = p3l 25): and (d) an admixture coefficient
of the third to the second mode of magnitude 0.025 (C., = -.025). (For the plate
e cﬁl parameter was positive, and for the shell it wis negative. These sign
conventions were necessary to generate the same shift in the node line of the second
mode on both the plate and the shell and they resulted only from a change in the
sign conventions between the NASTRAN analyses of the plate and the shell.) The
results provided structures which could be fabricated, and which had root-mean-square
thickness changes of 12.7 percent for the plate and 14.5 percent for the shell.

The new designs, as arrays of the fracti®nal changes in thickness of the
triangular elements of the plate and shell, respectively, are presented in Figs. Sa
and 5b.

E The designs of Figs. 5a and 5b were analyzed by NASTRAN to determine the new
frequencies and mode shapes of these structures. The modes of the original struc-
tures were then used to form a series to approximate (to least-square~error) the
shape of the new second mode, and therefore to give the resulting admixture coeffi-

cients C21 and CQ3.

The final results are presented in Table V, together with the results predicted
| by the more accurate perturbation calculation mentioned earlier in the description
of the CHANGNAST program, and considered further in Appendix.,
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Figure 5a New Design for the Flat Plate, Presented as a Ratio of the Change
in Thickness (Ah/h) for Each of the Elements (Clamped BEdge at Top) f
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Figure 5b New Design for the hSO Arc of a Cylindrical Shell as a Ratio of
the Change in Thickness (Ah/h) for Each of the Elements (Clamped

Edge at Top)




TABLE V

FINAL RESULTS

|
J
I
|
L Constraint Design Plate Results Shell Results
i NASTRAN Perturb. NASTRAN Perturb.
: : |
| Change in lst Mode |
i Frequency, Aw)/w, -.0k9 =.027 -.037 -.042 -.041 ﬁ
i
Change in 2nd Mode i
Frequency, Awn/w, =051 +.070 +.007 +.084 +.079 f
o« < |
i
Admixture Coefficient | Plate ¢
1st Mode to 2nd Mode | +.125 +.102 +.124 L
CL‘l }
Shell f
\ onieds -.112 -.118 3
:' . : . !%
i Admixture Coefficient j
3rd Mode to 2nd Mode -.025 -.021 -.020 -.027 -.028
Ca3
i The mode shape changes were quite successfully rendered by the new design.
However, the frequency changes have fallen short of what was required. All the
changes, however, arc in the divection required, and for this reason we may expect
that the process would converge upon a desired design if it were applied iteratively.
3
.f
|
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

Under the present contract, it was shown that it is feasible to apply the
inverse perturbation design method, originally developed at United Technologies
Research Center (Refs. 4 and 5), directly to the output of a finite element com-
puter analysis of a structure. Thus, this new structural design tool, at first
limited to a very simple geometry whose response characteristics could be suffi-
ciently characterized without the help of a NASTRAN type computation, has the
potential for application to the mathematically complex structure of, for example,
a turbine blade. (The twist and camber of such structures create analytical
difficulties requiring the use of finite element analysis to calculate their vibra-
tion modes to the necessary accuracy.) As described in the previous section, the
initial step in this direction has been taken with the redesign of a shell shaped
cantilever beam. In addition, the methodology was also applied to the redesign
of a flat cantilever plate for comparison with previous work, described in the
Appendix to the present report, which only required vibration data obtained holo-
graphically.

There is, of course, additional development required and, consequently, it is
recommended that the work be extended to pemmit refinement of the analytical
approach, together with experimental investigations concerned with the fabrication
and test of a redesigned structure. Further, attention needs to be devoted to the
inclusion of additional, permissable physical design changes other than the single

parameter of thickness, to which the technique has been restricted to date.

In summary, continued development of the inverse perturbation design procedure
would set the stage for: a) redesigning actual turbine blades; b) carrying out
iterative design procedures without the need for fabricating intermediate proto-
types; ¢) introducing holographic data into NASTRAN analyses to improve computer
modeling of turbine blades and other structures; and d) using holographic data
itself, rather than NASTRAN output, for the inverse perturbation design of structures.




be inverted so as to design a new structure having desired changes in vibration
modes, it is essential to keep the structural changes as small as possible. This
not only helps keep the changes within the approximation of first-order perturbation
analysis, but also avoids ill-conditioning of the simultaneous equations that must
be solved for a new design. Calculus of variations may be used to find the minimal
changes, and specifies a unique set of functions, derived from pairs of vibration
modes, that are optimal for expressing the structural changes needed to accomplish

a given set of changes in vibration modes. This theory is put into practice for a
cantilever plate, for which vibration-mode data is obtained by holographic vibration
analysis.

perturbation theory for the vibration modes of a structure and the inversion of that
theory for the purpose of structural redesign. Specifically, the first answered
the question: How will a small change to a structure, whose vibration modes are
known, affect those vibration modes? The second answered the question: How should
a structure, whose vibration modes are known, be modified to alter certain modes?
The use of first-order perturbation theory to answer the first question may not

be practical because finite-element computer analyses can often provide such answers
more accurately. This is because first-order approximations often become more
error prone in vibration theory than modeling approximations by finite elements.
With the second question, however, perturbation methods may have an advantage if

a considerable number of simultaneous changes to vibration modes are required.

This is because the computation time required for finite-element analyses can make
hunt-and-try methods impractical. Still, dependence upon first-order variational
theory of vibration modes can make an inverse-perturbation design procedure quite
inaccurate unless the structural changes are kept small. A method is needed,
therefore, to find the smallest physical change to a structure that will alter

its vibration modes in the desired manner.

APPENDIX

REDESIGNING STRUCTURAL VIBRATION MODES BY INVERSE
PERTURBATION, SUBJECT TO MINIMAL CHANGE THEQORY¥

Abstract

If first-order perturbation theory for the vibration modes of a structure is to

Introduction

Two previous papers (Refs. 4 and 5) have outlined both a general first-order

*

This appendix was authored by K. A. Stetson, I. R. Harrison and G. E. Palma.
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The next section of this appendix presents an application of the calculus of
variations to the problem of finding the minimum structural change necessary to
achieve a desired set of changes in the vibration modes. The remainder of the appen-
dix deals with the application of this theory to the redesign of a cantilever
plate, based upon data acquired by holographic vibration analysis. The design
parameter permitted to vary was the thickness of the plate, although, in principle,
the length and breadth of the plate could be used as design variables also. This
application required the development of both: .1) the necessary computer program
to perform the inverse perturbation design routine; and 2) a program to analyze
holographic interferograms of vibration modes so as to obtain accurate second
derivatives of the normal mode functions. These latter were required to model the
changes in bending strain due to changes in plate thickness. In the end, new
designs were actually generated and built as cantilever plates of nonuniform thick-
ness. These new plates were then analyzed to compare the actual changes in normal
vibration modes with the changes prescribed.

Theory

Minimization of Inverse Perturbation

The perturbation theory, as presented in Ref. 4 can be summarized as follows.
Let us assume that a small, distributed change, f(x), is made to a structure.
For every pair of vibration modes of the structure, ¢,(x) and &(x), there exists
a function, Onk(x), which describes the effect the change will have on these modes
by the integral

by = S lepdx) flx) dx.
0

—~
P
b =
~—

The variable x is taken to represent one, two or three dimensions depending upon
the nature of the structure, and L and O denote its boundaries. The parameter,
Ank’ describes change in either the square of the natural frequency if n=k, or
admixture between modes if n#¥k, i.e.,

s Am%/mzn, and 8, = an(w%-wﬁ)/wnmk’ (2A)

where Wy and w, are the natural frequencies (in radians) of the nth and kth modes,

and Cn is the admixture coefficient that describes the amount of the @k modeshape

that the °n mode subsumes as a result of the structural change. The mode admixutre
is described by
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QA(X) = 'bn(X) + '2( anek(x)

|
where ¢ (x) is the new shape of mode ¢,» and k=n is omitted from the swmation.

oy

m
he
L

functions, Onk(.\;), which may be called perturbation functions, need not be explicitly

defined at this point.

In redesigning the structure, we wish to specify certain changes in modal

frequencies Au\n, and certain changes in mode shapes expressable by admixture coeffi-

cients an’ : %
is to find a suitable function f(x), which will yield these A's via Eq. (1A).

; these changes specify certain A's via BEq. (2A). The goal, of course,

Unfortunately, there may exist a wide choice of functions that all yield these A's.

Let us seek, however, to find that function which will make the minimum change to

-

the structure. If we follow the procedure outlined by Schultz and Melsa (Ref.

we first require a suitable index of the change to the strucutre; for example,
the integral of the square of f(x). This may be referred to as a functional of
function, f(x), in that for any given function, the functional takes on a given
value. If the variation of the functional exists and the functional takes on a
minimum for a given function, then the variation of the functional will be zero

that function. We seek, therefore, a function that will sgtisfy the condition

N

7)

A

oy
10X

s fle2(x) dx = 0. (4a)
0

However, we also want the function to yield a given set of A's via a given set of

Eqs. (1A), i.e., when integrated times a given set of perturbation functions,

G

Onk(x).

+ 3 .

hese conditions are contraints upon our choice of functions, f(x). They

may be introduced into Eq. (4A) by the technique of undetermined multipliers. Let

N ‘0 11

us use the index p for the mode pair nk, and express the constraints in the fol
form:

0

LOW1nl

J‘L
2 [/t = 0 (x)F(x) 1dx (s8)

Let us assume that we have specified a set of F constraints as our goal for redesign

ach

of the structure. Since each of the P Eqs. (5A) equals zero, we may multiply et

by an arbitrary factor, 2\, and add it to Eq. (LA) without changing the variance

of the functional. This gives

$ {L {f2(x) + ng [a./L - o _(x)f(x)]} dx = 0. (6A)
1P D p
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Since the variational equation is in the form

e J' Kef(0 ax = 0,
we are led to the Euler equation
a X/of = 0. (TA)

This leads to the solution for the desired function, f(x),

- T 0 (x)
f(x) = >]:xp ep X). (8A)

The perturbation functions take on an interesting role in this problem in that they
not only may be used to determine the effects of any structural changes, they them-
selves form a set of optimal functions for formulating changes to the structure.

To determine the coefficients of the series in Eq. (8A), the Ap's, substitute

for fix) in Eg. (IA).

L

>

"
-t O

>

There are P such equations each of which has P unknown A's, for which we may solve
by the matrix equation

() = [¥1 (a), (104)

where the elements of Y, which may be called the perturbation matrix, are

= [t (11A)
qu { ep(x) eq(x) dx.

(Parentheses denote vectors or single column matrices and square brackets matrices.)
The final structural change may be expressed by

!
i
t
i
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f(x) = (a)T[¥17} (o(x)).

i

[f the perturbation functions are independent over the boundaries of the structure,

In general, the perturbation functions are independent even though they are not
orthogonal. This is true even if complementary pairs of perturbation functions,
“nk and Gku‘ are included, because these functions are not proportional unless pure
mass or pure stiffness changes are made. The rank of the perturbation matrix is
determined solely by the number of constraints, or redesign changes, required, and

not by the number of degrees of freedom of the structure. This generally means

P that the perturbation matrix will not be very large.

Formulating the problem, as above, allows one further insight into the process
of structural redesign. It is quite easy to show that the absolute minimum root-

mean-square change to the structure needed to accomplish a suggested redesign is

b
Min {.g £2(x) dx1V2 = ((a)T[¥]-2(a)1 172 (134)

This gives a measure of the difficulty invelved in making any suggested change in
the vibration modes of a structure. It will not, however, indicate any specific

violations of physical reality, such as negative plate thicknesses.

Application to Plate Design

For an isotropic plate, whose thickness we may vary, we may (as in Ref. &
write the following expression for the change parameter, A,

By * («.-nmkMk)'lf_f[(wi)Tg (¢;;)((1+ah/h)3—1)-wr2]phq~n@kah/h] dxdy. (1%A)

he modal mass of the kth mode, defined by

[
.
v

M = f;mc»ﬁ dxdy , (15A)

where p is the volume density of the material, and h "1'::
- { . P . v § ¢ (A
Eq. (1MA), Ah is the change in plate thickness and (¢,) is de

Lo

it can be shown (Ref. 8) that the matrix generated by Eq. (11A) must be nonsingular.




XX
°n

] = yy s
(or) o

XY
n

(16A)

where superscripts denote partial differentiation with respect to the superscript
variables, and G is defined by

Eh3/12(1-v2), (17A)

Oc —
o —c
nNO O

(1-v)

w T
where E is Young's modulus and v is Poisson's ration. (¢ ) denotes the transpose
of the column matrix, formed for the kth mode, as defined in Eq. (16A). The per-
centage change in frequency of a mode and the admixture coefficients between modes
may be calculated from the change parameters by

Awn/wn = (1+ Ann)]/z']’ and (18A)
Cok = Bnene/ (wh-of) .

(194)

To put Eq. (14A) into the form of Eq. (1A), we must obtain Ah/h (the percentage
change in thickness) as a common factor of both terms in the integrand. This can
be done by taking the first-order approximation

((1+ah/h)3-1) = 3ah/h. (20A)

From this, the perturbation function becomes

(1} T "
Opk = (wqu M)t [3(e0)°6 (0)-w2 oho o, 1. (214)

This is the function that may be used in Eqs. (11A) and (12A) with Ah/h replacing
f(x).

——




The use of approximation (20A) yields a design procedure that makes design
changes that accurately model changes in mass, but only approximately model changes
in stiffness._ Alternatively, we could choose linear changes in the cube of thick-
ness, :\(h-’)/h3, as our structural change, f(x), and perform the approximation in

the second term of the integrand of Eq. (1L4A). This leads to a perturbation function
that is simply 1/3 the value of that in Eq. (21A). Thus, we may consider either of
two possibilities for the redesign of an isotropic plate based on exact changes in
mass, (x\h/h)m. or on exact changes in stiffness, (Ah/h) . The two are related by

(Ah/h)s = (1 + 3(Ah/h)m)”3 } (22A)

ldeally, it would be desirable to make design changes that were modeled exactly in
both mass and stiffness. Attempting to do this leads to an Buler equation that
cannot .be solved meaningfully in the simple form of Iq. (8A), Nonetheless, once a
design has been obtained, kq. (14A) can be used to generate a more exact estimate
of the values of Apk to be expected.

Experimental Application

General Considerations

In choosing an experimental application of the proposed design technique, we
considered the following: There was considerable interest in a method that could
function with experimentally determined data, specifically, holographically obtained
data. There was interest in structures that resembled turbine blades; however, for
simplicity, we preferred to work with a plate structure. This led to the choice of
a cantilever plate. Holographic vibration analysis would provide displacement data
for the vibration modes which would require numerical processing to obtain second
derivatives. Errors in displacement data generally lead to severe errors in compu-
tation of second partial derivatives., Since our second partial derivative functions
were to be integrated, to form a perturbation matrix, or to model distributed
changes in the thickness of the plate, the average value of the second partials over
segments of the plate would be more important than their peak values. (The latter
are more important for prediction of failure due to stress.) This led to the idea
of dividing the plate into sections, fitting the data within each section to a bi-
quadratic function by least-square-error theory, and differentiating this function
to obtain the average value of the second derivative. Furthermore, there would be
similarities between this approach and the approach we would have to take if we
were to use vibration modes computed by finite element analyses as our input.
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MODLS Program

A computer program, named MODES, was written to obtain the second partial
derivatives of the modes of a plate. The program accepts data, in the form of x

and y coordinates and a fringe number, from photographs of holographic reconstructions

of the mode functions. It then fits this mode data for least-square error to a
quadratic function of two coordinates.

Because the second partial derivatives are required for the computation of the
perturbation functions, the mode shape must fit, to lowest order, a quadratic func-
tion in two dimensions. A bi-quadratic, rather than a bi-cubic fit, is used in
order to simplify the subsequent calculations, and to minimize the data error. A
cubic fit would follow the data errors more closely because of its added degrees
of freedom. The bi-quadratic function used may be expressed as

where ¢ is the mode value at any point x, y and 2A is the second partial derivative
with respect fo x, ®*X; 2B is the second partial derivative with respect to y, &V,
and C is the cross partial derivative, . D and E are the average first-partial
derivatives with respect to x and y, respectively, and I’ is the average value over

the section.

We are approximating a mode function of a structure which has continuous and
smooth first and second partial derivatives. Whereas the vibration amplitude
represented by a fringe is exact, there is error encountered in locating the center
of a fringe. In order to minimize the effect of this error, we must average over
the data. In this process, the fewer the degrees of freedom, the more the error
effect is minimized, which is why the data is fit to a bi-quadratic, which has con-
stant second partial derivatives. Because the fit to the vibration data yields
constant second partial derivatives over the area considered, it is necessary
to analyze the structure in sections, which gives an average fit for each section
of the mode. The constraint that the total function be continuous between sections
could be added, and a solution obtained; however, doing this makes the computation
more complex since the fits for all sections must be solved simultaneously. For
simplicity, data from each section of the structure was fit independently, and
continuity sacrificed. To get a good approximation to the mode function without
the continuous and smooth boundary constraints between sections, many sections
should be used. We must strike a balance, however, between getting a good, smooth
overall fit to the mode, and getting enough data per section to minimize data
error. This was done empirically by recording holograpms with high fringe den-
sities and dividing the structure so that at least fifty data points could be
taken per section.
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After the data from each section of the strucutre has been fit to a bi-quadratic
function, a computer storage file is formed for each mode, with the coefficients
of' the particular mode it and the center coordinates for each section of the struc-
ture stored in that file.

In actual use, the program was run on a time-sharing computer terminal and a
mode file name and fringe-order type were chosen. For each section, data was
entered as an x-y position and fringe number. A coordinate shift was made on each
set of data points, relative to the center of the section. Each data point, and
its corresponding fringe-order value, were used to compile matrix coefficients,
the contributions to which were linearly additive for each data point. After
adding the term for that point into the matrix, each data point is discarded as
the next point is read. The matrix and the vector, formed and solved for each

ection are

4 2.2 3 3 2 :
A X XY EXYn Iy IXp¥n Iy LR, Xy
2.2 4 3 S e 3 2 2
7 ) 5 PNY]
8 EXp¥n BYp IXp¥n  EXp¥p ¥y Y¥n n'n
3 3 - B 1
. 5 " o |
¢ EXp¥n EXnYn EXnYn EX¥n EXpYn EXyYn LR X Yn |
3 2 2 e - b ;
(24A) i
D LX EX,Y, XY LX), L% Yn EXg LR X \
2 3 2 . 2
X s ZQ 1
¢ E XY EYn EXnYn EXo¥n ¥y E¥n n'n |
F pxl oyl £X_y X Ly N 0 |
E - L- n n n’n n n e n
: where the letters A through F are coefficients of the fitted polynomial in Eq. (1A),
: X, and y, are the coordinates of the data point of the fringe whose order generates

the value &, and N ig the total number of data points. After sufficient data
| has been entered for a section, the user types END, which signals the computer to
solve for the coefficients A through I of ¢>n. This process is repeated for each
section of the structure, and all sections are included in the mode fit file.

Testing the MODES Program i
. . . . . |
The MODES program was tested for its accuracy in calculating second derivatives, i
and its sensitivity to data errvor by taking data from a known mode function which
was not of quadratic form. The data was generated numerically from an analytical
function, and these values were used in the mode fitting program. Then, random
error was added to the data and the sensitivity to the error was determined.
| |
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The theoretical solution for a plate, hinged at all edges, was used for this
test. The two vibration modes were

ty sin(x) sin(y), and

0y = sin(x) sin(2y) .

Contour plots of these modes are shown in Fig. 1A. The first quadrant of this
plate was divided into 25 sections, and the data from these sections were used in
the MODES program. The exact values of the second partial derivatives, averaged
over a section, and the exact values, calculated at the center point, were com-
puted from the analytical equations. Random error was then added to the same data
and used in the MODES program. (The error was added to the fringe values, "although
the actual error occurs in the x-y values, because the real error occurs as a per-
centage of the fringe spacing and varies in size from fringe to fringe. 8o long
as the error is small, this can be approximated by an error of uniform size in the
fringe values.) Different percents of error were tested, and the results (shown
in Table IA) indicate that less than 5 percent error is desirable.

TABLE YA

RANDOM ERROR EFFECTS ON MODES PROGRAM

Sect. 1 1 percent 5 percent 10 percent
o™ -.0845 -.0877 -.0321
o’y - 1139 -.0696 -. 349
oY +.9077 +.8955 +.8589

Sect. 2
o** -.1843 -. 2581 -.3508
oY -.1842 - 35 -.0957
o +.7247 +.7261 +.5735

Sect. 3
o™ -.0715 -.0365 -.1099
oY -.0695 -.0558 -.1479
oV |l +.6188 +.6058 +.6636
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The repeatability of the MODES program when a section is redigitized is also
a measure of its sensitivity to random error. A photograph of a holographic
vibration mode was placed on the digitizer table, and the same region was digitized
4 several times. At most there was a two percent difference, based on successive
% digitizations, in the perturbation function computed for the segment.

To compare the mode fit for data from an actual structure, with an analytical
solution, we used a disk fixed in the center. The analytical solution for a circular
disk with free edges is available. A photograph of the holographic reconstruction of
{ a two diameter mode was digitized and fitted in each of three sections. The sections
were at different radii and angles from the node line (see Fig. 2A). The calculated
perturbation function for each section was compared with the exact analytical
i value at the center point of each section. The percent differences for each
section were: section 1, 12.5 percent; section 2, 10.4 percent; and section 3,

26.0 percent.

Each calculated value is for the point with the specified radius and angle, and
Y the mode fit is an average over an area. If the area is decreased in size, the fit
should approach the exact solution.

S S T i it s n 5

CHANGES Program

Another program, CHANGES, solves the equations described in the section on
Theory to calculate the thickness changes required in a structure to make desired
changes in the vibration modes. The user specifies which modes are to be changed,
and by what amount. The change parameters specified (di€s All’ Al?' ete.) deter-
i mine which perturbation functions are required. The program accepts the mode
' coefficients (and normalizes them), the plate thicknesses, and other constants
needed to form each perturbation function. For simplicity, each perturbation func-
tion has a constant value for each section. This requires that the modal component
of the perturbation function, @n ®k, be averaged over each section. As a result,
each section will be assigned a constant change in thickness, and the new plate
will have a thickness profile with steps of differing height. Using the perturba-
tion functions, the computer forms the perturbation matrix, and from the change
4 parameters, the vector of A's. It then solves for the new thicknesses of a plate
having the desired mode changes, based upon exact changes in mass, (Ah/h)m. and
prints out the RMS thickness change. The program then goes back, and, using the
‘ new plate thicknesses, computes all the new mode changes; even those where change
: was not specified, via the more accurate method of Eq. (1LA).

5 The perturbation functions for the simply supported plate were calculated

' analytically on a programmable calculator. These perturbation functions were cal-
culated for the two mode functions in Eqs. (3A) and (4%A), and the perturbation func-
tions can be seen in Fig. 3A (a,b,c, and d). (Note that 0;7 and 0,5, for example,
have their maximum values at the corners of the plate even though the mode functions
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are zero there. This results from the high bending that occurs in the corners.)
Next, the mode coefficients for one quadrant of the simply supported plate, as
calculated from computer-generated data points (see MODES sections), were used in
the perturbation function part of the CHANGES program. These perturbation function
values were compared with computer calculated values for the exact analytical solu-
tion of the perturbation function for the plate. The results are shown in Fig.

LA (a,b,c, and d). Tabulated are the exact values at the center of the section

and the percentage error of the numerically calculated values. The results indicate
that a large percentage of error occurs only where the perturbation function is
small.

In order to check if changes in thickness gave the correct mode perturbations,
the thicknesses of two corners of the simply supported plate were thinned by 30 per-
cent. Again, the mode coefficienets for the simply supported plate, as calculated
from computer-generated points, were used in the perturbation function. This time
the mode perturbations were compared with the mode perturbations calculated analyt-
ically. The results are in Table IIA.

TABLE IIA

PERTURBATION COMPARISONS

Computed Analytic Percent Diff.
wy 151.779 Hz 151.645 Hz +.08 pct.
wy 387.233 Hz 386.378 Hz +.22 pct.
Ci2 +.012923 +.013311 ~.29% pct.
Czl -.01166 -.01277 -8.69 pct.

It was concluded that the CHANGES program worked properly, and that it and the
MODES program should be applied to an experimental test.

Implementation

The structure chosen for redesign was a 12.7 cm by 15.24 cm cantilever aluminum
plate, clamped on one end, and excited by electromagnetic transducers stimulating
eddy currents in the aluminum, The excitation frequency was adjusted until the
plate was vibrating in one of its normal modes, identified by observation through a
speckle interferometer. A suitable amplitude was set, and holograms were recorded
for the first five modes, the first three of which were presented as Fig. 3 in the
main body of the report. The frequency of the maximum response for each mode was
recorded (f, = 120,6 Hz, f, = 333.8 liz, £, = 730.6 Hz) and photographs were taken
of each holographic reconstruction and enlarged prints made.
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Fringe data from the mode photographs was extracted by means of an x-y

position digitizing table (279 mm square) made by Summagraphics, Inc., which was
accurate to 0.005 inches (0.13 mm). This consisted of an active table, a position
display, and a cursor, which itself consisted of cross hairs, position button, and
flag buttons. The cross hairs were centered over a point on the table and the
position button pushed. The X and Y values (in left-hand coordinates) for that
point on the table, then appeared on the display, and were sent to the computer

An overlay grid was drawn which had the same perimeter as the plate in the
photographs and was divided into 36 sections (6 x 6), with the center of each
section marked. This overlay grid, positioned and permanently fixed to the
digitizer table, was used for all three modes to delineate the sections of evalua-
tion. Each mode photograph was slid, in turn, under the grid for evaluation,
insuring that the orientations, sizes, positions, and centers of each section would
be the same for each mode.

For each section, the center point was recorded and the fringes were digitized,
one at a time. An initial fringe number (the lowest) was entered into the computer,
and after digitizing each fringe, the fringe number could be increased by one for
the next fringe by pushing the cursor's flag button, or by entering it separaetly
via the terminal. After each section was finished, an instruction (IND) initiated
computation of the mode coefficients for that section, and the process was repeated
for the next section.

After the mode coefficients for all sections of all three modes were found,
the A, B, and C coefficients for the first three modes were plotted on isometric
paper. These drawings were examined for smoothness, and sections that appeared
irregular were redigitized to check their accuracy. If new values were more regular,
they were used instead.

The exact thickness of each section of the plate was measured (the thickness of
the plate was roughly .31T75 cm, but the programs allow for different thicknesses
for each sectlon) and the other constants determined experimentally (E = 6.1 x lo‘l
(dynes/cm )s 0 = 2.7 (& /cm3), and v = .31). The mode coefficients, plate thickness,
and other constants were used in the CHANGES program. Several different designs,
with different mode perturbations were examined, and one such design was chosen
for fabrication via the (Ah/h)n model., The design chosen had change parameters
All = -.10, A,m = $,10, Doy = .5994, and Aﬂ3 = ,0880. 'The first two correspond

to changes in frequency of the first two modes of Awy/wy = -.106 and Aws/wy = +.095.
The second two correspond to admixture coefficients of C.,, = -.2ko1 and’ k\, = -,.0508,

“ ) .
which displace the node line of the second mode as shown 1n Fig. 5A. The ratios
Ah/h for each section are presented in Table ITTA, arranged in the 6 x € format of
the sections on the plate. The RMS change in thickness was 0.284.




CLAMPED END

Figure 5A Plot of New Node Line Required for the Second Mode of a Modified
Cantilever Plate
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TABLE TITA

FRACTIONAL THICKNESS CHANGES

Clamped End

-.109 -.169 -.356 -.294 -.084 +.196
+.011 +.028 -.007 -.017 +.003 +.016
-.058 +.111 +,193 +.222 +.147 +.047
-.230 +.006 +.135 +.294 +.265 +.218
-.506 -.107 +.135 +.284 +.404 +.281
-.847 -.352 +.153 +.468 +.506 +.504

Free End

Figure 6A shows the new plate, cemented and bolted to the same base block used
for the uniform plate, and located in position with respect to the h»ylogram
recording apparatus. The frequencies of the first three modes for tlis plate were
106.3 Hz, 381.5 Hz, and T770.6 Hz, respectively, and a photograph of the holographic
reconstruction of the new second mode is presented in Fig. TA. The admixture
coefficients were determined by digitizing section 34, the free end section that
contained the displaced node line, and processing the data with the MODES program
to get the bi-quadratic fit coefficients. These were then normalized and used
with the normalized bi-quadratic fit coefficients for that section from the first
three modes of the original uniform plate to form a set of simultaneous equations
expressing the new mode shape as a linear combination of the old mode shapes.
Solution of these equations gave the admixture coefficients C:,1 = -0.217 and
C,, = -0.0935. 3

=y

Given the plate with modified thickness, as tabulated in Table TIA, there are
three ways to calculate the expected perturbations of the vibration modes. First,
we may integrate Ah/h times 0n§ as defined in E%. (21A). Second, we may compute
the corresponding variable A(h3)/h3 = ((1+Ah/h)”-1) and integrate its product with
Onk/3' (The latter will correctly model changes in stiffness, whereas the
former will correctly model changes in mass.) Third, we may use both parameters

in Eq. (14A) to get the most accurate estimate of the first-order mode perturbations.

The results of these three methods are tabulated in Table TVA, together with the
experimentally determined values. Also tabulated are the root-mean-square differ-
ences between the experimental and each of the calculated values.
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Figure TA

Photograph of a Hologram Reconstruction of ¢ Cantilever
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Thickness

Vibrating in its Second Mode
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TABLE TVA

PERTURBATTION COMPARTSONS

via via via
Exper. | ah/h a(h3)/h3] Eq. (14) (Des.-Exp.)
Aw]/w] -.119 -.106 -.153 -.0593 +.013 ]
sz/wz +.143 +.095 +.0634 +.151 -.048
Aw3/w3 +.055 +.015 +.0246 +.0661
CZ] -.217 -.2491 =.2443 -.2487 -.032
e t
C23 -.0935 -.0508 -.0553 -.0559 +.043 t i
RMS diff. 0.0372 | 0.0471 ! 0.0351 |
| (Note that the perturbation of the frequency of the third mode has been included, 1
even though it was a parameter whose change was not specified. The perturbations
! calculated via Ah/h (except for Aw./w,) were the design objectives, and the RMS 1

difference between these and the experimentally obtained results was .0365. This
is 25 percent of the root-mean-square of the design changes. The last column
presents the absolute difference between the original design requirements and the
experimentally obtained values.)

Considering the complexity of the design requirements, and the size of the
changes specified (admixture between modes 2 and 1 was 25 percent), we should
regard the results as quite favorable. All constrained parameters did change in
the correct direction, and it is reasonable to assume that a second iteration of
the method, based on data taken from the second plate, would result in a plate whose
vibratory performance would be quite close to specification. It should be noted
that the largest change parameter, C,,, seems to have dominated the design at this
step. The last column of Table IVA, which would provide the input requirements
1 for the next iteration, shows a set of rather small changes well distributed between
the four parameters.

In spite of the good agreement Just discussed, considerable thought was given
to the sources of error that might lead to the differences between the experimental
and calculated perturbations. These could be: a) the stepwise nature of our plate,
b) the scale of our changes being too large for first-order perturbation theory,
and ¢) errors in our original calculations of second derivatives.

With respect to the stepwise structure of our plate, another plate, with
slightly different design changes, was built both in steps and as a smoothly con-
toured surface interpolated between the centers of our sections. The experimentally
determined perturbations showed less variation between these two designs than the
variations in Table IIIA.
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The scale of our changes, vis-a-vis the range of first-order perturbation
theory, is the most likely source of error. Still, the errors inherent in the
calculations of the second partial derivatives of the mode shapes needed to be
examined. One way to do this is through orthogonality and Rayleigh-Quotient
tests. To describe these, let us define a parameter, Knk' as

K., = («»Q)T

2 G (o) dxdy. (26A)

The orthogonality relationship derived in Ref. 4 requires that

Knk E 0 2 ( "I’-‘\\
and Rayleigh's principle requires that
k
K /sz # ] . K:Sx\\

nn° nn

Knn should be the modal stiffness, Kn.

A program called CHECK was written to accept the data from the original uniforn
plate and compute the checks:

1/2
Knk/(KnnKkk) , when n#k and

2
Knn/wnMn » when n=kK.

! The results are presented in Table VA.




TABLE VA

ORTHOGONALITY & RAYLEIGH QUOTIENT CHECKS

nk check
12 -.014
13 -.126
23 +.0276
n 0.808
22 0.830
33 0.741

The first mode does not seem to have a stiffness function that is orthogonal
with that of the third mode, and the three Rayleigh Quotients are all too small.
It must be concluded, therefore, that there are significant errors in the second
partial derivatives computed from the vibration mode data. This is understandable
because these computations involved considerable modeling approximations to begin
with. From a theoretical standpoint, these checks should be regarded as funda-
mental requirements for the modeling of the mode functions in the first place.
Thus, what we really desire are values for the second partial derivatives, as
close as possible to the ones experimentally calculated, that none-the-less
satisfy orthogonality and Rayleigh-Quotient conditions. Fortunately, the minimiza-
tion theory presented previously can be used to find these values, and this is
presented in the next section.

Theory of Minimal Adjustments

We wish to make the smallest changes to the 2nd partial derivatives needed
to pass the orthogonality and Rayleigh -Quotient conditions.,

"
We represent the small changes by matrices, (A¢n) to be added to the matrices

(o).

0w - XX y xyy T
(aep) = (ag), M%’ » 8 Y)

The orthogonality criteria and Rayleigh-Quotient criteria are defined by Eqs. (27A)
and (28A), respectively. Since we have three modes we have only six constraints
on the changes (4% ), as opposed to 36 sections for each of three modes. If we
make the minimal changes to the 2nd derivatives, however, in the same way as the
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minimal thickness changes were obtained, the problem begomes uniquely solvable to

a first-order approximation. If we substitute (Qn + Aon) into Eqs. (27A) and (28A),
the Rayleigh-Quotient and orthogonality conditions can be expressed to first-order
as,

0 = ffp, dxdy = JSTK -0 M) /A +(082) TG(0%) + (ep)G(asp) ] dxdy (294)

when n=k, and

" T L1} (1) T n
0= fankdxd_y = jj‘[xnk/Ao+(A¢n) G(op) + (op) G(aey)] dxdy, (30)

when n#k, and Ao is the area of the plate. These criteria can be multipled by an
arbitrary constant and added to the equation expressing the mean-square change. In
the case of two modes, we obtain the following equation for zero variance of the
index of change,

= " T " " T " \
0 6ff[(A¢]) I (a07) + (805)°1 (805)-2Py1 =2,P 5 -AgPyo] dxdy  (31A
where I is the identity matrix.

The solution of this equation is found by setting the partials of the integrand,
with respect to all components of (A@l) and (4¢5), equal to zero. This gives

(a¢7) = G [(¢),(93), 0] (), and 324)
(a93) = 6 [0, (e7),(e5)] (A). (334)

" "
These equations for (A¢,) and (A¢,) can be substituted into Egs. (29A) and (30A) to
solve for (A). The three resulting equations may be put into matrix notation to
be solved for (A), given which A¢ can be found via Eqs. (32A) and (33A).

-(Kyy-wiMy)/2

SIiten) . (op), 01768 [ey) o(8) 5 0] dxdy

X
oy +ff10 (83,030 17 G8L0,(43) o(05)] dxdy
~(Kgg-uiM,)/2

(N (3u)

IR T3~ =




We wish to extend this process to adjust three modes. Equation (31A) then takes

the form,

0 =8 ffT(ae)T 1 (a0)) + (ae5)T 1 (as) + (asy)T 1 (aey)

The 4111 ions of the

\j“.‘\\\’
Euler equations in this case are

(aeq)

1
X 2]

[(e7).(e3),(e3), 0, 0, 0] (1), (364)

B e

(a¢3)

"
to

[0’ (N")s 0» (og)r(c'g)) 0] ()\): (37A)

(a0y)

]
o

[0, 0,(e7), 0 ,(e5).(e§)] (1) .

(384)

For simplicity, let us call the matrices in the square brackets of Egs. (36A)-(38a),
O, R, and §, respectively. Then, the equations that must be solved for (1) may be
written in matrix form as

-(Kyq-wiMy) /2

K2

Ky g . [ﬂ’(gTeeg + RTGGR + $7GGS)dxdy] (1).

~ <~ ~ <~ ~~~

(394)

-(Kpp-wiMy) /2

-K23 :.‘

As before, the solution for (A) is used in Egs. (36A)-(38A) to generate the changes
in the secoi.d derivatives necessary to obtain values to satisfy the orthogonality
and Rayleigh-Quotient conditions.

A progranm called MINFUDGE was written which performed the computations indicated

above. Because the computation was actually a first-order approximation in Eqs. (29A)
and (30A), two passes were required to obtain less than one percent ervor when the




adjusted second partial derivatives were put into the CHECK program. The result
of both passes are presented in Table VIA.

TABLE VIA

CHECK PROGRAM RESULTS
g nk cneck(1) check(2)
12 +.00514 +.000576
13 +.0169 +.00285
23 +.00368 +.00691
1 1.0306 1.00060
! 22 1.00931 1.00003
33 1.0250 1.00024

Finally, the adjusted values were used in the program that calculated the
perturbations that should theoretically result from the design changes (Table IITIA).
Only the computations via Eq. (14A) were made because these were presumed to be the

most accurate. These are presented in Table VIIA.

TABLE VIIA

PERTURBATION CALCULATIONS

MINFUDGE(1) MINFUDGE (2)
By /g -.0864 -.0822 i
Busyl w +.175 +.174 ;
3 Bog/ug + +.099 +.096
Gy -.2389 -.2400
Ca3 +.0643 +.0637
RMS diff. 0.0327 0.0328




It can be seen from Table VITA that application of the MINFUDGE program to the
values for the second partial derivatives did reduce the RMS difference between
the calculated and experimental perturbations. There seems to be little value in
more than one application, however, and it cannot be said that the adjustment of
the second derivatives made an outstanding improvement in the perturbation calcula-
tions. The rather large scale of the changes attempted in this design must be
responsible, therefore, for the majority of the errors. It would be desirable to
obtain a useful measure of the range of application of this technique. However,
without a large number of comparisons between theory and experiment it is difficult
to establish such a range. The RMS change in thickness, however, is probably the
most relevant parameter, and the value of 28.4 percent for the case presented
here is probably too large. Most probably, values between 10 percent and 15 per-
cent would be more in keeping with the spirit of first-order perturbations.

Finally, some thought must be given to the extension of this method to more
practical structures such as turbine blades, which would require knowledge of the
vectorial mode displacements, and holographic determination of the in-plane strains
as well as the bending strains. The technique of heterodyne hologram interferom-
etry (Ref. 9) would have to be used to obtain these strain values. As yet, however,
that type of holographic analysis has not been applied to vibration, but, in
principle, could be by the addition of stroboscopic techniques. Dividing the struc-
ture into sections would still be the most practical realization of this procedure,
although the computation of the perturbation functions would be more complex, of
course. The simple products of mode functions would be replaced by scalar products
of vectorial mode functions, and there would also be contributions due to the in-
plane strain components. The complete description of what would be involved is
well beyond the scope of this paper; however, it is our hope that our elementary
results may stimulate further work in this area.
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